
 Contact Us
978.250.4983

Test Driven Development (TDD), and Refactoring Legacy
Code Using Java
Duration: 28 hours

Prerequisites: Java programming experience and an understanding of object-oriented design principles

Course Description: This course provides students with hands on experience learning Test Driven Development (TDD)

using Java and JUnit. Students will build unit tests using mocks, fakes, stubs and drivers, and address issues working
with databases and other systems. Students will create tests and code that will be more likely to meet and exceed
requirements. Code that receives “test coverage” will not break existing systems, because tests are passed before code
is checked in.

Students will spend time working with the issues involved in refactoring legacy code, safely cutting into an already
deployed system. Students will work on looking for, or creating “seams” to more safely improve code or add features,
and work on identifying “code smells” that need attention in a productive system.

Finally, students will explore dependency issues as well as techniques to better understand and improve complex
systems.

Comprehensive Java labs provide facilitated hands on practice during the course, allowing students to develop
competence and confidence with the new skills being learned.

Students Will Learn

Why Test?

Unit Testing Basics

Unit Testing Details

Mocks, Fakes, Stubs and Drivers

Database Testing

Refactoring Basics

Patterns and Anti-Patterns in Test Driven
Development

Refactoring Legacy Code

Analysis and Coverage

System, Regression and User Acceptance Testing

Overview

Why TDD? Think Twice, Write Production Code Once
Utilizing a Safety Net of Automated Testing
Agile Development Concepts
Eliminating Bugs Early
Smoothing Out Production Rollouts
Writing Code Faster via Testing
Reducing Technical Debt

Basic Unit Testing
JUnit
JUnit Testing
Adding Complexity to Initial Simple Tests
Making Tests Easy to Run
The TDD Pattern: Red, Green Refactor
Using Methods of the Assert Class

Practicing Emergent Design
Making Changes More Safe
The Importance of Regression Testing

Boundary Testing
Unit Test Limitations

Comprehensive Unit Testing Concepts
Using Declarative-Style Attributes
Using Hamcrest Matchers for More Complex
Scenarios
Using Test Categories
Exception Handling in Tests
JUnit Test Initialization and Clean Up Methods
Writing Clean and Dirty Tests
Testing with Collections, Generics and Arrays
Negative Testing

Mocks, Fakes, Stubs and Drivers
TDD Development Patterns
Naming Conventions for Better Code
Using Mock Objects
Using Fakes
Using Stubs
Test Doubles
Manual Mocking
Mocking with a Mock Framework
Self-Shunt Pattern

Database Unit Testing
Mocking the Data Layer
Identifying what Should Be Tested in Databases
Stored Procedure Tests
Schema Testing
Using NDbUnit to Set Up the DB Test Environment

Refactoring Basics
Refactoring Existing Code
Restructuring
Extracting Methods
Removing Duplication
Reducing Coupling
Division of Responsibilities
Improving Clarity and Maintainability
Test First - then Refactor
More Complex Refactoring Considerations

Patterns and Anti-Patterns in TDD
The SOLID Principles
Factory Methods
Coding to Interface References
Checking Parameters for Validity Test
Open/Closed Principle: Open to Extension, Closed to
Change
Breaking Out Method/Object
Extract and Override Call
Extract and Override Factory Method
Singleton Pattern
Decorator Pattern
Facade Pattern
State Pattern
MVP, MVC and MVVM Patterns
Finding and Removing Code Smells/Antipatterns

Refactoring Legacy Code
Reducing Risk of Change

Eliminating Dependencies
Characterization Tests as a Safety Net
Introducing Abstractions to Break
Dependencies

Analyzing Legacy Code
Identifying Pinch Points with Effect Analysis
Identifying Seams for Expansion and Testing
Listing Markup

Minimizing Risk of Adding New Behavior
Sprout Method
Sprout Class
Wrap Method
Wrap Class

Dealing with Code that's Difficult to Test
Globals and Singletons in Tests
Inaccessible Methods and Fields

Using Smells to Identify What to Refactor
Dealing with Monster Methods
Dealing with Excessively Complex, Large
Classes
Identifying and Eliminating Duplication
Other Smells

Dealing with Large Legacy Systems
Preserving Signatures

Code Coverage
White Box vs Black Box Testing
Planning to Increase Code Coverage Over Time

Goal 80% or More Test Coverage
Statement Coverage
Condition Coverage
Path Coverage

Risks Changing Legacy/Production Systems
Refactoring
Coupling and Cohesion Issues
Taking Small Tested Steps

Related Bootcamp

Track Duration Price

Advanced Java Developer 4-course track
5-course track
6-course track
7-course track
8-course track

$4,800
$6,000
$7,200
$8,400
$9,600

Contact Us
Address: 1 Village Square, Suite 3 Chelmsford, MA 01824

Phone: 978.250.4983

Mon - Thur: 9 am - 5 pm EST
Fri: 9 am - 4 pm EST

E-mail: info@developer-bootcamp.com

Copyright© 2018 Developer Bootcamp

https://www.developer-bootcamp.com/master-java-developer.htm
mailto:info@developer-bootcamp.com

	Local Disk
	Test-Driven Development Bootcamp Training | TDD Training Course

